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Numerical methods are usually constructed for solving mathematical prob-
lems such as differential equations or optimization problems. In this contri-
bution we discuss the fact that numerical methods, applied inversely, were
also important in establishing these models. We show in detail the discovery
of the laws of planetary motion by Kepler and Newton, which stood at the
beginning of modern science. The 400th anniversary of the publication of
Kepler’s laws (1609) is a good occasion for this investigation.
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1. Origins of numerical analysis

We start with an overview of the origins of numerical methods for ODEs.
The problem we choose is the movement of a body with negligible mass in
the gravitational field of two fixed bodies with masses A and B, positions
x1 = 0 for the first, x1 = a for the second, and x2 = 0 for both. The
so-called Newton’s equations for this problem are

ddx1

dt2
= − Ax1

v3
− B(x1 − a)

u3
,

ddx2

dt2
= − Ax2

v3
− Bx2

u3
, (1.1)

v =
√

x2
1 + x2

2, u =
√

(x1 − a)2 + x2
2, A = 2, B = 1, a = 1. (1.2)
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This is one of the problems for which Euler managed, by an incredible tour
de force, to find analytical formulas for the solutions in the two-dimensional
case (Euler E301 1766) and the three-dimensional case (Euler E328 1767).
Here we use this problem to demonstrate numerical methods for the chosen
initial position x10 = 1.47, ẋ10 = −0.81, x20 = 0.8, ẋ20 = 0.

1.1. Euler’s method

Figure 1.1. First publication of Euler’s method in E342, written for
the differential equation dy

dx = V (x, y) with initial values y(a) = b.

In his monumental three-volume treatise Institutiones Calculi Integralis
(Euler E342 1768, E366 1769, E385 1770), after having explained analytic
formulas for integrals, so-called Riemann sums for integrals without an-
alytic solutions, and analytic formulas for ordinary differential equations,
Euler reached the problem of finding approximate solutions of differential
equations without analytic solutions by an extension of the idea of Riemann
sums (Euler E342 1768, Pars II, §650). This led to Euler’s method, whose
first publication, written for the differential equation dy

dx = V (x, y) with
initial values y(a) = b, is reproduced in Figure 1.1.

−1

1
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C

h = 1/4

Figure 1.2. The problem with two fixed mass points
and solution using Euler’s method for h = 1/4.
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For an equation of the type (1.1), i.e.,

ddx

dt2
= F (t, x) or

dx

dt
= v,

dv

dt
= F (t, x), (1.3)

this method becomes

xn+1 = xn + hvn, vn+1 = vn + hF (tn, xn), h = ∆t,
(1.4)

(Euler E366, Liber I, Pars II, Sectio I, Caput XII, Problema 137, §1082);
Euler’s x, y, p, ω, a, b, c are our t, x, v, h, t0, x0, v0, respectively. The modus
operandi of this method is illustrated in Figure 1.2: the solution point moves
from the initial point x0 with constant initial velocity v0 during the time
interval h to x1 (first formula of (1.4)). The initial velocity is updated by
using the force F (t0, x0) evaluated at the initial point (second formula of
(1.4)) to obtain v1, which is then used to move the solution point during
the second time interval to x2, and so on.

Euler did not, perhaps, require much genius to design this primitive-
looking method, but he needed great genius to understand that it works,
despite all these accumulated truncation errors and their propagation. He
demonstrated the convergence of the solution, as h → 0, for several ex-
amples. We demonstrate the convergence of the solution for problem (1.1)
graphically in Figure 1.3. A formal convergence proof, using what was later
called a Lipschitz condition, was given by Cauchy in 1824.

1

A B

C

Figure 1.3. The solution of the problem with two fixed mass points
using Euler’s method for h = 1/32, h = 1/64 and h = 1/128.
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Figure 1.4. Euler’s third-order Taylor method.

1.2. Euler’s higher-order methods and implicit methods

A couple of paragraphs later (in §656 of E342), Euler realizes that one
can very much improve (‘magis perficere’) the above method (‘methodum
praecedentem’), by adding, at each step, to the term yn+1 = yn+hV (xn, yn)
higher-order terms of the Taylor series

yn+1 = yn + hy′n +
h2

1 · 2y′′n +
h3

1 · 2 · 3y′′′n + · · · ,

computing the higher derivatives of y′ = V (x, y) by implicit differentiation
y′′ = ∂V

∂x + ∂V
∂y · y′, etc. (see Figure 1.4).

It can be observed graphically in Figure 1.5 that this same method, ap-
plied with order 3 (up to this order, Euler wrote the derivatives explicitly)
to our problem with two fixed mass points, really improves the solution,
especially if the step-size h becomes small.

−1
A B

C

h = 1/128

Figure 1.5. The solutions using Euler’s third-order
method for h = 1/32, h = 1/64 and h = 1/128.
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Figure 1.6. Euler’s third-order implicit ‘Obreschkoff’ method.

But what represents the formula reproduced in Figure 1.6, with its curious
sign changes, which Euler had written half a page earlier? Well, we can
observe that the initial value b and the solution value y have been inter-
changed. This is the implicit Euler method for order 1 and represents the
so-called Hermite–Obreschkoff methods of the first column of the Padé table
for higher orders; see Hairer, Nørsett and Wanner (1993, Section II.13).
Euler realizes that the application of such a formula requires the solution of
an ‘aequatio algebraica’.

1.3. Recursive computation of Taylor coefficients

At the beginning of the era of automatic electronic calculating machines,
many authors had discovered independently the possibility of computing,
in a more or less general setting, the Taylor coefficients of the solutions
of differential equations in a differentiation-free recursive algorithm.1 We
demonstrate the method using the example y′ = x2 + y2. Set

y(x0+h) = y0 + hy1 + h2y2 + h3y3 + h4y4 + · · · , x2 = x2
0 + 2x0h + h2,

develop
y′ = y1 + 2y2h + 3y3h

2 + 4y4h
3 + · · ·

= x2
0 + 2x0h + h2

+ y2
0 + 2y1y0h + 2y0y2h

2 + 2y0y3h
3

+ y2
1h

2 + 2y1y2h
3 + · · ·

(1.5)

and compare coefficients. In each column yn+1, say, appears above terms of
lower index, which allows us to compute them recursively via

y1 = x2
0 + y2

0, 2y2 = 2x0 +2y1y0, 3y3 = 1+2y0y2 + y2
1, 4y4 = 2y0y3 +2y1y2,

(1.6)
and so on. This can be turned into the following general algorithm.

Suppose that f of y′ = f(x, y) is composed of elementary functions, such
as r = pq or r = pc with c a constant. Then each of these functions is
replaced by a formula computing the ith term of the Taylor coefficient of r

1 This author, in his very first book, written in 1968, compiled the following list:
J. F. Steffensen 1956, A. Gibbons 1960, W. Gautschi 1966, R. E. Moore 1966, I. Mennig
1964, Miller-Hurst 1958, E. Rabe 1961, E. Fehlberg 1964, Deprit-Zahar 1966, Leavitt
1966, Richtmyer 1957, Shanks 1964, Chiarella-Reichel 1968, A. J. Strecok 1968.
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Figure 1.7. Euler’s recursive differentiation-free computation
of the Taylor coefficients of the solutions of y′ = x2 + y2.

from coefficients of lower order of r, or of the same order of p and q:

r = pq : ⇒ ri =
i∑

j=0

pjqi−j , i = 0, 1, 2, . . . ,

r = pc : ⇒ r0 = pc
0, ri =

1
ip0

(
i−1∑
j=0

(
ci − (c + 1)j

)
rjpi−j

)
, i = 1, 2, . . . .

Thus the following scheme computes all derivatives recursively:

x0, y0 �→ · · · p0, q0 → r0 · · · �→ f0

· · · · · · · · ·
y1 = f0 �→ · · · p1, q1 → r1 · · · �→ f1

· · · · · · · · ·
y2 = 1

2f1 �→ · · · p2, q2 → r2 · · · �→ f2

· · · · · · · · ·
y3 = 1

3f2 �→ · · · p3, q3 → r3 · · · �→ f3

· · · · · · · · ·
y4 = 1

4f3 etc.,

(1.7)

to any order. And what is the surprise? If we compare Figure 1.7, which
is copied from §663 of E342, with the formulas of (1.6), we see that Euler
invented this too. (‘Uti haec methodus simplicior . . . ’)

1.4. The ‘symplectic’ Euler method

There is another way of improving Euler’s method, not with the heavy
machinery of higher derivatives, but with a small and clever modification
of the formulas. We saw in Figure 1.2 that with Euler’s method (1.4) the
velocity updates v1 − v0 are computed from the force F at the point x0,
which lies just outside the interval of action of these two velocities. Hence
we obtain a much more symmetric situation if we update the velocity with
the force evaluated at the point x1, and have in general

xn+1 = xn + hvn, vn+1 = vn + hF (tn+1, xn+1), h = ∆t. (1.8)

This modification is free of charge: it just requires us to exchange two lines
of the code, but leads to a significant increase of the performance, as can
be seen in Figure 1.8.



Kepler, Newton and numerical analysis 567

−1

1

A B

C

h = 1/128

Figure 1.8. The solutions with the symplectic Euler
method for h = 1/32, h = 1/64 and h = 1/128.

This method, for reasons which are explained in Hairer, Lubich and Wan-
ner (2006, Section VI.3), bears the name symplectic Euler method , and was
designed by De Vogelaere (1956) for computations in nuclear physics. This
very first paper on symplectic integration was so ahead of current research
interests that it never found a publisher.

Now, after all we have seen above, we might ask if there is yet another
miracle, and whether this method, too, can be found somewhere in Euler’s
work? No, this miracle has not taken place, but another miracle has: this
method appears in Newton’s Principia Mathematica, from 1687 , and will
play an important role in the discussions below. Did you say 1687, the
reader may ask, a century earlier than Euler? Yes, but it was then used
inversely , as we will see in the following sections.

2. ‘Inverse’ numerical methods

How are the differential equations for modelling phenomena of nature jus-
tified? We will see the surprising fact that numerical methods for ODEs
are older than ODEs themselves, but were used inversely to establish these
ODEs. Here are some examples.

2.1. The tractrix of Leibniz

During the years 1674/75 young Leibniz was visiting Paris and received
from Christiaan Huygens his first introduction to ‘modern’ mathematics.
During this visit, the famous architect and medical doctor Claude Perrault
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stated the following challenge: Which curve is described by a silver pocket
watch (‘horologio portabili suae thecae argentae’), when it is pulled across
the table, where the end of the chain moves on a straight line (see (2.1) left)?
Today’s students are told that ‘trivially’ this curve must have a tangent of
constant length a and that therefore we have to solve

y a

√
a2 − y2

dy

dx
= − y√

a2 − y2
, (2.1)

which can be solved by methods revealed by Euler (E342 1768), namely,
separation of the variables and then an integral containing a square root of
a quadratic polynomial.

Figure 2.1. Drawings by Leibniz (left) and Kowalewski (right).

But for Leibniz who, as one of the inventors of differential calculus, was
certainly not a stupid man, this conclusion was not so easy (see Figure 2.1,
from Leibniz (1693); the drawing by Kowalewski, in his translation of 1908,
is even clearer): physical intuition tells us that pulling the watch with a
finger along a line is the same as rotating the chain, which is assumed
to be without weight, by a small angle to the right, then pulling in the
direction of the chain, until the imposed line is reached again, and so on.
The polygon B1, B2, B3 . . . , which we obtain in this way, is precisely the
result of the implicit Euler method applied to equation (2.1). We see that
this differential equation is justified through the inverse use of the implicit
Euler method.

A brilliant history of the tractrix, including a detailed description from
the earliest publications up to later developments in the 20th century, has
recently been published by Tournès (2009). In particular, it contains on
page 11 an autograph drawing by Jacob Bernoulli (dated before 1692) ex-
plaining the properties of the curve using the explicit Euler method.
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vi−1 vi vi+1

dvi

dt
= K · ((vi+1 − vi) − (vi − vi−1))

Figure 2.2. The discovery of the heat equation by Fourier (1822).

2.2. Fourier’s heat equation

One of the most important books of science in the nineteenth century,
La Théorie Analytique de la Chaleur by Fourier (1822), originates from
a manuscript sent to the French Academy of Sciences in 1807, which was
rejected due to ‘lack of rigour’ and could only be published after Lagrange’s
death. It is here that Fourier discovers the parabolic partial differential
equation which governs the transport of heat, and whose solution led to the
important concepts of separation of variables, eigenvalue problems, Fourier
series and Fourier transform.

We see in Figure 2.2 the first publication of this equation, and in words
(not formulas) Fourier’s motivation for justifying it: in §59 he applies New-
ton’s observation that the quantity of heat passing from one soup pot to an-
other is proportional to the difference of the temperatures, on the molecular
level. Therefore, if vi is the temperature of the ith molecule (Fourier used the
symbols v and v′), the heat it receives from the right-hand neighbour during
an instance ‘infiniment petite’ of time is dvi = K ·(vi+1−vi)·dt; similarly the
heat received from the left-hand neighbour will be dvi = K · (vi−1 − vi) · dt.
The sum of these two terms is a second-order finite difference of the values
vi−1, vi, vi+1; when the distance of the molecules tends to zero, this expres-
sion will become the second partial derivative with respect to space. The
heat equation is thus justified by the method of lines applied inversely.
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Figure 2.3. The discovery of the equation of sound by Lagrange (1759).

2.3. Lagrange’s theory of sound

In Lagrange’s paper of 1759, one of the first papers with which the young
rising scientific star filled the newly founded Miscellanea Taurinensia, the
above ideas are explained even more clearly: the air is thought to consist
of a sequence of molecules, tied together with elastic forces. If we denote
by yi the displacement of the ith molecule, then the elastic forces acting
from the left-hand and the right-hand neighbour are, following Hooke’s law,
proportional to the differences yi−1 − yi to the left, and yi+1 − yi to the
right. The sum of these two forces is again a second finite difference and
must be proportional to the acceleration d2yi

dt2
. This gives the first formula

in Figure 2.3 (right). The inverse use of the method of lines then leads
to the partial differential equation for sound (second formula). In order
to solve it, Lagrange proceeds back to the method of lines (third formula)
which represents a linear system of ODEs with constant coefficients, which
Lagrange solved using the ‘now-so-familiar formulas’ of Euler. After lengthy
calculations, Lagrange finally stood at the door of Fourier series but did not
open it; for more details see Hairer et al. (1993, pp. 28–29).

2.4. Euler’s equations for variational calculus

We all learned in analysis lectures that Euler found his famous differential
equation for a general variational problem,

J =
∫ b

a
Z dx = min! vel max!, (2.2)
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Figure 2.4. The ‘variation’ of one single y-value in Jacob
Bernoulli’s solution of the brachistochrone problem (left)
and in Euler’s derivation of his general formula (right).

where Z = Z(x, y, p) is an arbitrarily given function of x, y and p = dy
dx , in

his masterpiece, Euler E65 (1744), and that the proof usually given is due
to Lagrange in 1755. This leads naturally to the question: How did Euler
himself discover this equation, which enabled him to solve many dozens of
such problems of all kinds? We will see that Euler’s original route, displayed
in Figure 2.4 (right), is quite elegant.

The solution y(x) is represented by a discrete sequence y, y′, y′′, y′′′, . . .
(in the figure h, i, k, l, m, . . . ; today we would say ‘piecewise linear finite
elements’), and the integral J in (2.2) by a ‘finite Riemann sum’,

J = (2.3)

This J must be minimal for each choice of the values h, i, k, l, m, . . . . We
therefore differentiate it with respect to any of these (in Figure 2.4 Euler
moves n to ν). We write (2.3) more explicitly, merging Euler’s notation
with ours, and replacing the derivative p by a finite divided difference

J = Z

(
x, y,

y′ − y

dx

)
dx + Z

(
x′, y′,

y′′ − y′

dx

)
dx + · · · , (2.4)

differentiate with respect to y′, which appears in three places, set this deriva-
tive to zero, and obtain

= 0, where N =
∂Z

∂y
, P =

∂Z

∂p
. (2.5)

This condition, which must hold everywhere, is precisely the differential
equation

or
∂Z

∂y
− d

dx

(
∂Z

∂p

)
= 0, (2.6)

discretized by the implicit Euler method. Hence, again, the inverse use of
this method, and all other numerical procedures applied before, establishes
equation (2.6), the famous Euler’s equation of variational calculus.
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2.5. Conclusion

We see from all the above examples that numerical methods are more than
just simple recipes which allow lazy scientists to consign their duty to a
computer, but they constitute, applied inversely, the foundations of the
application of analysis to science. We conclude with a quotation due to
Bertrand Russell:2

Although this may seem a paradox, all exact science is dominated by
the idea of approximation.

B. Russell, The Scientific Outlook (1931)

3. The origin of Kepler’s laws

Astronomy is older than physics. In fact, it got physics started by
showing the beautiful simplicity of the motion of the stars and planets,
the understanding of which was the beginning of physics.

R. Feynman (1963); published in Six Easy Pieces (1994), p. 59

[Gravity] was one of the first great laws to be discovered and it has
an interesting history. You may say, ‘Yes, but then it is old hat, I
would like to hear something about a more modern science’. More
recent perhaps, but not more modern. . . . I do not feel at all bad
about telling you about the Law of Gravitation because in describing
its history and methods, the character of its discovery, its quality, I
am being completely modern.

R. Feynman, Messenger Lectures (1964);
published in The Character of Physical Law (1967)

We now go back to the very beginning of science (see the first quotation from
Feynman), or rather, to the beginning of modern science (second quotation,
from a public lecture in which Feynman, soon to receive the Nobel Prize,
spoke, not about recent discoveries in quantum electrodynamics, but, to the
astonishment of everybody, about Kepler’s and Newton’s laws).

3.1. Ptolemy (∼ AD 150 )

The first great observer of the sky, with thousands of precise measurements
of the position of the stars and planets, was Ptolemy, who lived around
AD 150. His fundamental work, originally called the Great Collection, or,
in Greek, ἡ μεγάλη σ	́υνταξις, was given by Islamic astronomers the Arabic
definite article ‘al’, to become the multilingual conglomerate Almagest. It
was translated in the second half of the fifteenth century by Peurbach and

2 Communicated to the author by Jan Lacki, Geneva.
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Figure 3.1. Left : Frontispiece of Regiomontanus’ translation of Ptolemy’s
Almagest , published in 1496; we see the Earth in the centre, with the
stars rotating around attached to a solid machinery. Right : A page of
Copernicus’ manuscript De Revolutionibus, representing the heliocentric
system, published just before his death in 1543. Reproduced, with per-
mission, from the copy of De Revolutionibus, call number BJ10000, in the
Library of the Jagiellonian University, Kraków, Poland.

Regiomontanus and published in 1496 in Venice as one of the very first
scientific books ever printed (see Figure 3.1, left). This book had a big
influence on the astronomers of that time, in particular a young Polish fellow
studying in Bologna, Nicolaus Copernicus. Ptolemy’s conclusion after all
his measurements is explained in the central drawing of Figure 3.2 (right):
the Earth is in the centre, the Sun moves around the Earth, and the planets
move on epicycles, circles whose centres move around the Earth.

3.2. Nicolaus Copernicus (1473–1543 )

Kepler (1609, p. 131) wrote: ‘I start by explaining these things in the Coper-
nican setting, where they are easiest to understand.’ Hence, the Coper-
nican system is explained in the first image of Kepler’s drawing in Fig-
ure 3.2 (right): the Sun is in the centre and all planets, including the Earth,
rotate around the Sun on circles which are, however, in an eccentric posi-
tion. This model, which makes no distinction between the Earth and the
other planets, is the simplest of all, and therefore an attractive choice. An
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Figure 3.2. Left : Tycho Brahe (1546–1601). Right : Explanation of
the three systems of Copernicus (above), Ptolemy (centre) and Tycho
Brahe (below) in Kepler’s Astronomia Nova (1609).

outermost circle (‘sphaera immobilis’) is then reserved for the fixed stars
(‘stellarii fixarii’; see Figure 3.1, right). Copernicus, who had obtained this
result after life-long effort and observations, hesitated to make it public,
but this was finally achieved with the help of the German mathematician
G. J. Rheticus, just before Copernicus’ death in 1543.

3.3. Tycho Brahe (1546–1601 )

Tycho Brahe was a Danish nobleman who became impassioned by astron-
omy after a solar eclipse of 1560, the supernova of 1572 and the comet
of 1577. The imperfection of existing astronomical predictions, based on
Ptolemy’s calculations, motivated him to become ‘a second Ptolemy’, by
building the huge astronomical observatory Uraniborg on the island of Hven,
where, over many years, he made thousands of astronomical measurements
with unequalled precision (accurate to 1 arc minute). After problems with
the new king, he left Denmark in 1597 with all his tables and went to Prague.
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Tycho did not accept the Copernican system, because if the Earth were
moving around the Sun, then the fixed stars must show a parallax, which,
however, could not be observed.3 Therefore, Tycho’s model of the universe
was as follows (see the third drawing in Figure 3.2, right): the Sun rotates
around the Earth on an eccentric circle, and the planets rotate around the
Sun, also on eccentric circles. The sphere with the fixed stars does not move.

3.4. The Ptolemy–Copernicus–Brahe model for planetary motion

As long as we are only interested in the relative position of a planet with
respect to the Sun, i.e., in the geometry of such an orbit, and not its physical
quantities such as forces and accelerations, it does not matter which body is
moving and which is not (since we are in Denmark, we may say ‘to move or
not to move, that is the question . . . ’). In this case, all three above models
are equivalent and state the following (see Figure 3.3).

(1) The planets move around the Sun on circular orbits. The centre B of
this circle is called the Mean Sun and its distance from the Sun S is
governed by the eccentricity. This law describing the geometric form
of the orbit is called in the old literature ‘inequalitas prima’.

(2) The speed of the planet on this orbit, which has been observed being
faster close to the Sun and slower away from it, is governed by a punc-
tum aequans C, which is at the same distance from B as S, in the
opposite position. Seen from this punctum aequans, the planets move
at constant angular speed. This law is called ‘inequalitas secunda’.

S

B

C

Figure 3.3. The Ptolemy–Copernicus–Brahe model for planetary
motion: S the Sun, B the Mean Sun, C the punctum aequans.

3 Because of the tremendous distance of the fixed stars, their parallaxes, which were
finally discovered more than 200 years later (by Bessel in 1838), required more than a
hundred times greater precision (< 0.3 arc seconds).
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In numerical calculations lasting years, Tycho tried to adjust the three
parameters (radius, eccentricity and inclination of the line CS) of each of
the planetary orbits for all his observations.

This worked fine for all planets except for Mars!

When young Johannes Kepler, who had fled Graz because of religious per-
secution, arrived in Prague, Tycho gave him the data of Mars to study. It
is suspected that Tycho, who found the young man too self-assured and
ambitious, wanted to cool him down with an apparently impossible task.

3.5. Kepler’s Astronomia Nova

During the year 1605 Kepler finally unveiled the secret of the orbit of Mars,
four years after the sudden death of Tycho. However, owing to differences
with Tycho’s family, lack of money and the tremendous size of Kepler’s
manuscript, the book could not be published until 1609. In the same year,
Galileo pointed his first telescope towards the sky. Both events, 400 years
ago, can be said to mark the birth of modern astronomy, and thus of all
modern science.

Figure 3.4. Frontispiece and synopsis of Kepler’s Astronomia Nova.
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We see in Figure 3.4 (left) the frontispiece of this work. Following the
title, Kepler writes ‘Αἰτιολογητός seu Physica Coelestis’, which expresses
that Kepler is also interested in the physical reasons for the movement of
the planets, and not only in their geometry. Then comes ‘of the movement
of the star Mars from the observations of Tycho Brahe’. We see that Tycho’s
name is printed in precisely the same size as ‘the mathematician Johannes
Kepler’ below. We also read ‘after many years of pertinacious study in
Prague’. The name of Emperor Rudolf II, who paid for all this, is in the
same huge letters as the planet Mars.

After a long hymn of praise for the emperor, several poems and an oblig-
atory page by Tycho’s son-in-law F. G. Tengnagel praising Tycho, the book
starts with an introduction, which sounds very ‘modern’, about the difficulty
of writing (and reading) a mathematical book (see Figure 3.5).

The book, with its 340 quarto pages, arranged in 70 chapters, is indeed
very difficult to read. To help the reader, Kepler included a ‘Synopsis Totius
Operis’ on a huge sheet, which must be (carefully) unfolded from the book,
listing all the 70 chapters in the form of a binary tree (see Figure 3.4, right).
We see that the book consists of five parts; parts three (discovery of Kepler’s
Second Law) and four (Kepler’s First Law) are the central core.

Figure 3.5. The ‘very modern’ introduction of Kepler’s Astronomia
Nova: ‘Today the requirements for writing mathematical books, es-
pecially astronomical ones, are very hard. If you do not preserve the
original details of the propositions, instructions, demonstrations and
conclusions, the book will not be mathematical. If, however, you do
preserve them, the book will be very boring to read.’
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3.6. Kepler’s Pars Secunda: ‘Ad imitationem veterum’

If you find these calculations tedious (‘pertaesum’), then have pity on
me (‘jure mei te miserat’): I did them at least 70 times, losing a lot
of time (‘ad minimum septuagies ivi cum plurima temporis jactura’).

Kepler, Astronomia Nova (1609), p. 95

In part two, Kepler tries to obtain the best possible results ‘by imitating
the Ancients’ (the ‘Ancients’ are Ptolemy, Copernicus and Tycho Brahe, 25
years older than him). His main observation is that there is no convincing
reason for the assumption that, in Figure 3.3, the punctum aequans C is at
the same distance from B as the Sun S. Therefore he allows an arbitrary
position for C, which increases the number of free parameters to 4, hence
these constants must be determined from 4 observations. This leads to very
tedious calculations (see quotation), which Kepler solved by an iterative
scheme similar to the regula falsi (see Figure 3.6). As a result, Kepler
obtained a very precise model, the Hypothesis Vicaria, for the orbit of the
Earth. The importance of this is the fact that only through knowing the
distance of the Earth at any moment can the distances of the other planets
be computed accurately, by measuring all the angles and using the sine
theorem of trigonometry.

Figure 3.6. Above: Kepler’s improved
model leading to the Hypothesis
Vicaria. Right: An example of the
recursive computation of its parameters.
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3.7. Kepler’s Pars Tertia: ‘Ex propria sententia’ (his own opinion).

In his third part (Chapters 22–40), Kepler wants to rid himself more and
more of all this geometric thinking, with the punctum aequans C as a kind
of machine pushing the planets, and wants to accept only truly physical
reasons, as announced in his title:

These discussions fill Chapters 32–39. But if we throw away the punctum
aequans, we have to replace it by something else. What could that be?
The only really fixed object is the Sun, in the centre of the Universe (‘I
myself am of the opinion of Copernicus: I admit that the Earth is one of
the planets’, p. 170). After long deliberations about all possible reasons,
forces, magnetic forces, the light coming from the Sun, wind from an ether,
he finally concludes that planets must have a soul, which looks to the Sun
and ‘wishes’ to move, seeing its diameter inversely proportional to the dis-
tance (‘Is it so, Kepler, that you attribute two eyes to each planet? Not
at all.’ p. 191). ‘You see thus, reader, with reflection and spirit’ (p. 191),
that the speed of the planets is inversely proportional to the distance (see
Figure 3.7, left).

However, the arc length of a curve is a nasty mathematical expression: it
involves Pythagoras’ theorem and an uncomfortable square root. So, finally,
inspired by the ideas of a great mathematical god, Archimedes,
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Figure 3.7. Left : Kepler’s model from Chapter 39 with the speed
inversely proportional to the distance. Right : Kepler’s ‘methodus
imperfecta’ from Chapter 40: equal times correspond to equal areas.
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he decides to replace the hypothenuse by the leg (the orthogonal distance of
the rays) and arrive at the ‘methodus imperfecta’, saying that the heights of
the triangles are inversely proportional to the distance, i.e., that the areas
of the triangles for equal times are all the same (see Figure 3.7, right).
In this way, Kepler’s Second Law was finally discovered, and corresponded
perfectly with the observations of Tycho.

3.8. Kepler’s Pars Quarta: the elliptic orbits

The most difficult part was yet to come: the definite renunciation of all
Greek and medieval thinking on circular orbits. This nearly hopeless strug-
gle fills Chapters 41–55, until the epiphany in Chapter 56 (p. 267):

As I reflected . . . that my triumph over Mars had been futile, I fell
by chance on the observation that the secant of the angle 5◦18′ is
1.00429, which was the error of the measure of the maximal point.
I awoke as if from sleep, & a new light broke on me.

This decisive discovery is explained in Figure 3.8 (right). If the orbit of Mars
were a circle of radius 1, then the eccentricity e = OS is such that the angle
OBS would be 5◦18′, where B is the point with the largest elongation from
the axis SOC. Therefore the distance BS would be 1/ cos 5◦18′ = 1.00429.
But Tycho measured 1 for this distance. Therefore, we should move the point
B to the point B′, whose distance B′S is that of BO; in other words, we have
to replace, once again, the hypothenuse BS by the leg BO (‘Hence, what
brought us to despair in Chapter 39, now changes here into an argument to
attain the truth,’ p. 267). Kepler applied the same recipe to other points:
move the point P to the position P ′ so that the length P ′S is that of the
leg PR, which is

P ′S = PR = 1 + e cos u, (3.1)

because the angle u, called the eccentric anomaly , reappears as angle SOR,
so OR = e cos u. Kepler finally concluded that ‘these distances are con-
firmed by very numerous and very sure measurements’ (Chapter 56, end).

In Chapters 58 and 59, Kepler finally achieves the proof that the orbit
expressed by formula (3.1) represents an ellipse, with the Sun in one focus.
The theory of conics had been developed to high perfection by Apollonius
(∼ 250 BC) and completed by Pappus (∼ AD 300–350), but then forgotten
for more than 1000 years. One rediscovery, albeit in a very rudimentary
form, had been by Kepler himself in 1604, so Kepler claimed his proof to be
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1.00429

1

1

5◦18′
u

S

B
R

O

P

C

P ′

B′

Figure 3.8. The discovery of Kepler’s First Law (Chapter 56,
p. 267): Kepler’s drawing (left), modern drawing (right).

‘although very sure, lacking art and not geometric’ (p. 293). He concluded
that the reader should consult the conics of Apollonius, ‘which requires very
strong meditations and reflections about these matters’ (p. 295). In fact,
formula (3.1) just expresses the result of Pappus that the distance PS is in
a constant ratio e : 1 with the distance of P to a directrix.

In Chapter 60, finally, Kepler establishes for the area P ′SC, which by his
Second Law is proportional to the elapsed time t, the expression

Const · t =
B′O

2
· (u + e sin u)

(‘composed of two portions of area, a sector and a triangle’, p. 299). The
solution of this equation allows one to find u for any given time t, ‘but I
believe myself unable to solve it, and whoever shows the way would be for
me a great Apollonius’ (p. 300).

3.9. Kepler’s Third Law

Work on the Astronomia Nova, with all its ‘artless’ numerical calculations
and hazardous conclusions, was for Kepler something of an interruption to
his true vocation, which was to unveil the harmonies of God’s creations with
the help of the beauty of mathematics, in particular geometry and music.4

4 ‘Geometria enim, . . . Deo coaeterna, inque Mente divina relucens, exempla Deo supped-
itavit, . . . exornandi Mundi, ut is fieret Optimus et Pulcherrimus, denique Creatoris
simillimus.’ (p. 13; see also Gesammelte Werke, Vol. 6, pp. 104 and 489; ‘Geometry,
eternal as God, and shining out of the Divine Mind, has supplied God with the mod-
els for shaping the World, making it the Best and most Beautiful, hence similar to
the Creator.’)
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Researching harmonies . . . from geometry . . . and music . . .

Figure 3.9. Kepler’s Harmonices Mundi (1619).

This research which he had begun in 1599 led finally to the Harmonices
Mundi (Kepler 1619), in five books and an appendix (see Figure 3.9).

Although the books contain many beautiful results in mathematics, in
particular the first rediscovery of the complete list of the 13 so-called Archi-
medean solids (some of which are shown in Figure 3.9, centre), the applica-
tions of all this to interesting results in astronomy led constantly to failure.
Finally, the most famous result of this book was again discovered by vul-
gar numerical calculations and announced towards the end (Kepler 1619,
Liber V, Caput 3, §8, p. 189) as follows:

‘It is extremely certain and extremely exact that the ratio of the time period
for two planets is one and a half of the ratio of the mean distances.’ In this
way Kepler expresses the fact that

T1/T2 = (a1/a2)3/2.
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3.10. Galileo Galilei (1564–1642)

. . . io grandemente dubito che Aristotele non sperimentasse . . .
(I have strong doubts if Aristotle did make any experiments . . . )

Galileo’s Discorsi (1638), First Day

De subiecto vetustissimo novissimam promovemus scientiam.
(We present an entirely new science on a very old subject.)

Galileo’s Discorsi (1638), Third Day

Another important influence on modern science came from Galileo in Italy.
A first manuscript by Galileo on mechanics, finished around 1629, was trans-
lated into French and published in 1634 by Marin Mersenne. He soon ran
into problems with the Roman Curia, and his masterly publication of 1638,
Discorsi e Dimostrazioni Matematiche, written in the form of discussions
between three persons of different scientific level in six days, was smuggled
out of Italy and published in the Netherlands.

In 1609, the same year in which Kepler’s Astronomia Nova appeared,
Galileo first directed his telescope towards the sky. His discovery of the satel-
lites of Jupiter and the phases of Venus left no doubts about the Copernican
system. At the same time, he tried to understand mechanics by experiment-
ing with ropes, heavy stones and beams down on Earth (see Figure 3.10).
While the first two ‘days’ of the Discorsi were written in popular Italian, for
the third ‘day’ Galileo turned to serious Latin (see quotation), and laid the
fundamental principles of an ‘entirely new’ mechanics, such as mass, forces
and acceleration, as we know it today.

Figure 3.10. Illustrations from Galileo’s Discorsi of 1638
(left and right), and his Mechanics of 1629 (centre).
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3.11. Conclusion

We conclude this section with a quotation from Kepler (1609, p. 95):

There might exist ingenious geometers, like Viète, who think they are
doing something great in showing this [numerical] method to be art-
less.5 Indeed, Viète made this very criticism of Ptolemy, Copernicus
& Regiomontanus in his work. Let them step forward, then, & solve
the scheme geometrically. They will be great Apollos for me.

This great Apollo will lead us to the next section.

4. Newton’s discovery of the Law of Gravitation

This sudden change of emphasis has been provoked by a visit from Ed-
mund Halley (1656–1742), which probably took place in August [1684].

S. Mandelbrote, Footprints of the Lion (2001), p. 88

During the half-century which separated Kepler’s works from Newton’s
studies in Cambridge, Kepler’s laws slowly became known and accepted,
not through the books we have cited above, but through the Rudolphine
Tables (Kepler 1627), a huge compendium of more than 300 pages of ta-
bles for the positions of stars and planets, which Kepler computed with the
help of his laws, and which became the universal tool for generations of as-
tronomers – and astrologers. Also, Galileo’s principles of mechanics became
known, particularly in Cambridge through the lectures of Isaac Barrow, who
had visited Paris and Florence in 1655/56.

It thus became a natural challenge to understand the principles governing
the movement of the planets from a mechanical point of view. Newton, who
was in priority dispute with Robert Hooke of London over this discovery, de-
clared later that he had discovered all this during the plague years 1665/66,
but no written evidence about this claim could be found in his manuscripts.

The first manuscript clearly showing Newton’s ideas is one dating to 1684,
initiated by a visit to Cambridge by Edmund Halley, bringing news from

5 In fact, this is still a very ‘modern’ opinion.
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London (see quotation). All the illustrations produced below are reproduced
from this manuscript.6 This manuscript (and others) later led to the epoch-
making Principia (Newton 1687).

4.1. Proof of Kepler’s Second Law

. . . what Newton writes is correct, clear, and short; in earlier works
the brilliant diamonds of discovery lie concealed in an opaque matrix
of wordy special cases, laborious details, metaphysics, confusion, and
error, while Newton follows a vein of pure gold.

C. Truesdell, Essays in the History of Mechanics (1968), p. 88

Figure 4.1. Newton’s Lex 1 and Lex 2 from the manuscript Add. 39657a.

The first principles of motion fill many pages of axioms, theorems and dis-
cussions of the third ‘day’ of Galileo’s Discorsi and many pages of beautiful
prose in Barrow’s lectures; for example: ‘The following Axiom of Aristotle
concerning Motion is famous . . . : He that is ignorant of Motion, must nec-
essarily know nothing of Nature,’ (Barrow 1670, p. 2), or ‘You know the very
trite Saying of St. Austin,7 If no one asks me, I know; but if any Person
should require me to tell him, I cannot,’ (Barrow 1670, p. 4). But Newton
subsumes everything into three short and precise laws, the first two of which
are as follows (see Figure 4.1).

Lex 1. Without force a body remains in uniform motion on a straight line.

Lex 2. The change of motion is proportional to the motive force impressed.

These laws were also expressed independently by Huygens (1673).
The basic idea is now displayed in Figure 4.2. Instead of thinking of the

body moving on a curve ABCDEF . . . under the continuous influence of a
force F acting from the Sun, we let it move under Lex 1 from A to B during
a time interval ∆t without force, and replace the forces acting by one force
impulse of size ∆t ·F at the end of this step. If this force is directed towards
the Sun, by Lex 2 the velocity which was in direction AB will change to the

6 With courtesy of Cambridge University Library.
7 St. Augustine.
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Figure 4.2. Newton’s drawing of the symplectic Euler method for
the proof of Kepler’s Second Law; manuscript Add. 39657a (left),
publication in the Principia (right).

direction AV such that BV S are aligned. So for the next time interval, the
body will move from B to C such that ABCV is a parallelogram.

The proof of Kepler’s Second Law is now as follows (see Figure 4.3). If
the force impulse at B had not occurred, the body would have continued
under Lex 1 until c such that AB = Bc. The triangles SAB and SBc have
the same altitudes and the same bases. Hence, by Eucl. I.41, they have the
same areas. Next, since the triangles ABV and BcC are the same, cC will
be parallel to BV , which, by hypothesis, is in the direction of BS. This
means that the triangles SBc and SBC again have the same bases (which
is SB) and the same altitudes, and thus the same areas. We conclude that
ABS has the same area as BCS, and if we continue like this, all triangles
ABS, BCS, CDS, DES, etc., will have the same areas.

Remark. If we recall the explanations of Section 1.4 above, we see that this
proof of Newton uses precisely the symplectic Euler method , because the
force impulse uses the force evaluated at the end of the interval. Here, this
method is used inversely; the properties of the numerical solution are pulled
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Figure 4.3. Eucl. I.41: All the triangles have the
same area; Newton’s proof of Kepler’s Second Law.
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back to the continuous problem, and then constitute Kepler’s Second Law.
This became the ‘Theorema 1’ of the Principia and Kepler would surely
have been very happy with this superbly elegant proof.

4.2. Newton’s discovery of the Law of Gravitation from Kepler’s First and
Second Laws

. . . one of the most far-reaching generalizations of the human mind.
While we are admiring the human mind, we should take some time
off to stand in awe of a nature that could follow with such complete-
ness and generality such an elegantly simple principle as the law of
gravitation.

R. Feynman (1963); published in Six Easy Pieces (1994), p. 89

The next, and greater, challenge is to find out the quantity of this force.
Two lemmas will give the answer.

Lemma 1. For a fixed time interval ∆t, the force impulse is proportional
to the distance RQ, where R is on the tangent and Q is on the orbit (see
Figure 4.4, right).

Proof. Newton’s motivation is shown in Figure 4.4 (left). Let our body
move, under the continuous force, from A to D. If there were no force,
it would move to B on the tangent; if it had no initial velocity, it would
move to C. By a principle of superposition of forces and movements (which
requires another lemma), we see that BD = AC, which is proportional, for
a fixed ∆t and by Lex 2, to the acting force. Huygens (1673) illustrated the
same result with the picture shown in Figure 4.4 (centre).

S

P
M

R

Q

V

Figure 4.4. Proof of Lemma 1: Newton’s manuscript Add. 39656, from
1684 (left); Huygens, 1673 (centre); the Störmer–Verlet method (right).
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A third way of seeing this result is to place the force impulse ∆t ·F in the
middle M of the time interval (Figure 4.4, right). Our intuitive intelligence,
and more numerical analysis, tell us that the resulting point Q is very close
to the orbit, and by parallel lines we see that the acting force, which is
proportional to MV by Lex 2, is also proportional to RQ.

This last method bears the name Störmer–Verlet. It is also symplectic;
many further properties are explained in Hairer, Lubich and Wanner (2003).

Lemma 2. Let an ellipse be given with focus S. Then there is a constant
such that, for every P on the ellipse, Q on the ellipse close to P , PR a
tangent, RQS and PTS aligned and T the orthogonal projection of Q to
PS (see Figure 4.5), we have

RQ ≈ Const · QT 2. (4.1)

Proof. Half of Newton’s proof is displayed in Figure 4.6, where Lemma 2 is
called ‘Prob. 3’. Most readers, perhaps, would like some more explanations.
The result is easier to see for circular motion (see Figure 4.7), where the
formula AT · TP = QT 2 is known in geometry as the ‘Theorem of the
Altitudes’, or, for experts, Eucl. II.14. Then, if Q moves towards P ,

RQ → TP =
QT 2

AT
≈ QT 2

2a
. (4.2)

In the general case we draw the ‘diametri conjugata’ GP and DK. The
latter is parallel to the tangent, to which we draw the parallel QXV (see
Figure 4.6 as well as Figure 4.8). Now formula (4.2) has to be scaled by
the halved lengths of these diameters, for which we use the letters c and d
respectively, and we instead obtain

V P ≈ c

2d2
· QV 2. (4.3)

Figure 4.5. Newton’s drawing for Lemma 2.
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Figure 4.6. Proof of Lemma 2 in Newton’s autograph Add. 39656 (1684).

A
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R

Figure 4.7. The proof of Lemma 2 for circular motion.
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Figure 4.8. Modern illustration of Newton’s proof of Lemma 2.

The next result we need is that EP = a, the major semi-axis. This follows
from known theorems of Apollonius, i.e., that SP + PH = 2a, SE = EI
and IP = PH, but for Newton it was not an easy task (see the beginning
of the proof of ‘Prob. 3’ in the lower part of Figure 4.6). This allows us to
compute V P from XP ≈ RQ and QV ≈ QX from QT , by similar triangles
XV P ∼ ECP as well as QTX ∼ PFE, giving

V P ≈ c

a
· RQ and QV ≈ a

h
· QT. (4.4)

These two formulas inserted into (4.3) lead to

RQ ≈ a3

2h2d2
· QT 2. (4.5)

Our last difficulty is in understanding that hd = ab. This is another theorem
of Apollonius (Apoll. VII.31) which Newton had to rediscover, and which
states that parallelograms based on conjugate diameters of an ellipse all
have the same area. Inserting this into (4.5), we finally obtain

RQ ≈ a

2b2
· QT 2, (4.6)

the desired result.

Theorem 1. (Proposition XI of the Principia) A body P , orbiting
according to Kepler’s First and Second Laws, is moving under the effect of
a centripetal force, directed to the centre S, inversely proportional to the
square of the distance.
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Figure 4.9. The three steps of the proof of the Law of Gravitation.

The proof is in three steps, as shown in Figure 4.9, by combining Lemma 1,
Lemma 2 and Kepler’s Second Law, which together lead to:

The force is proportional to
1
r2

.

Another century later we arrive at Euler E112 (1749, p. 103), where the
so-called ‘Newton’s equations’

are published for the first time, and for which Newton’s ideas are inverse
numerical methods.

While physicists call these ‘Newton’s equations’, they occur nowhere
in the work of Newton or of anyone else prior to 1747 . . . such is the
universal ignorance of the true history of mechanics.

C. Truesdell, Essays in the History of Mechanics (1968), p. 117
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5. Richard Feynman’s elegant proof

Pour voir présentement que cette courbe ABC . . . est toûjours
une Section Conique, ainsi que M. Newton l’a supposé . . . sans le
démontrer; il y faut bien plus d’adresse:
(To see that the curve ABC . . . is always a conic section, which New-
ton supposed it to be, without proof, requires much more ability.)

Johann Bernoulli (1710); in Radelet-de Grave and Villaggio (2007)

. . . no calculus required, no differential equations, no conservation
laws, no dynamics, no angular momentum, no constants of integra-
tion. This is Feynman at his best: reducing something seemingly big,
complicated, and difficult to something small, simple, and easy.

B. Beckman (2006)

As we have just seen, in the Principia of 1687 Newton proved that a body
moving around the Sun according to Kepler’s First and Second Laws pos-
sesses the centrifugal force prescribed by the inverse square law. The recipro-
cal question, however, still remains open: Is every movement under a central
inverse square force always an ellipse (or a conic)? Johann Bernoulli, in his
usual sarcastic style, did not attribute to Newton enough ability (‘adresse’)
to answer this question (see quotation). For other authors such as Arnol’d
(1989), this result is clear from the uniqueness of the solutions. In any
case, those who have seen one of the usual proofs in calculus know that the
computations are not easy.

Fortunately, there is an elegant idea, in a ‘lost lecture’ of Richard Feyn-
man, which D. L. and J. R. Goodstein (1996) discovered under inches of dust
in Feynman’s papers.

Feynman’s idea. We see in Figure 5.1 the movement of our body moving
under the inverse squares law represented with constant time steps ∆t, so
that the force impulses towards the Sun are proportional to 1/r2. Let us now
modify this picture (see Figure 5.2), not with constant time steps, but with
constant angles ∆φ. Numerical analysts would say that we use another step-
size control. Now the areas of the triangles, which are all similar, become
proportional to r2 (this is Eucl. VI.19). Now, by Kepler’s Second Law,
whose proof is the same as for Lemma 1 above, all time steps ∆t become
proportional to r2. As a consequence, all force impulses ∆t · F are:

(1) of constant length, and

(2) under an angle which changes constantly by ∆φ.

We now draw the velocities Ṗ in the velocity plane, called the hodograph.
Because of Newton’s Lex 2 and the two properties above, this hodograph
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Figure 5.1. Planetary motion in constant time intervals.
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Figure 5.3. The hodograph for inverse square motion is a circle.

behaves like a dog which is dragged across the floor, pulled through the
same distances each time, but in different directions. So the dog, starting
from the velocity Ṗ0, which is in an upward direction with maximal speed,
is first dragged to the left, later downwards, to Ṗ1, then to Ṗ2 and so on,
describing the arc of a circle (Figure 5.3). The origin O, corresponding to
speed 0, may lie in the circle (this corresponds to elliptic movement), or on
the circle (parabolic), or outside the circle (hyperbolic movement).

Our last problem is to find a connection between the circle of Figure 5.3
and the orbit in Figure 5.2. Concerning this question, Feynman said ‘I took
a long time to find that,’ and Beckman (2006) said ‘Take a deep breath and
look at the following.’

We know from geometry that if we have an ellipse with foci, say, C and
O, then for every point P on the ellipse the sum of the distances satisfies
CP +PO = 2a. This means, too, that the distance of P from O is the same
as its distance from the circle centred at C with radius 2a.

Well, let us have a second look at Figure 5.3: we see a circle centred at
C and a point O inside this circle. This leads to the idea of considering
the curve of points P having the same distance from these two objects (see
Figure 5.4). We know, as we just saw, that it is an ellipse. It is also known
from geometry (Apoll. III.48), that the tangent at any point, say P̃3, reflects
the ray OP̃3 to C, or, equivalently, that this tangent is orthogonal to OṖ3.
On the contrary, in Figure 5.2 the tangent of the orbit is parallel to OṖ3.
Furthermore, the angles in C, respectively S, move with the same constant
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Ṗ0

f

Ṗ1
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Figure 5.4. The hodograph with the ellipse of the same distance.

speed in both curves. Consequently, the orbit of Figure 5.2 is proportional
to the ellipse of Figure 5.4, rotated by 90◦. This concludes the proof.

Feynman comments on this beautiful proof as follows (lecture of March 13,
1964, 35th minute):

It is not easy to use the geometrical method to discover things. It is
very difficult, but the elegance of the demonstrations after the discov-
eries are made is really very great. The power of the analytic method
is that it is much easier to discover things and to prove things. But
not in any degree of elegance. It’s a lot of dirty paper, with x’s and
y’s and crossed out cancellations and so on. [laughter]

Published in D. L. and J. R. Goodstein, Feynman’s Lost Lecture (1996)

What about rigour? Many mathematicians would not consider the above
to constitute rigorous proofs but merely nice illustrations. For example,
the footnotes in D. T. Whiteside’s edition of Newton’s Mathematical Papers
(2008), trying to render Newton’s proofs rigorous, with all sorts of curved
movements and estimations, are three times as long as Newton’s original
text. We numerical analysts know, however, that all the above formulas
and pictures represent numerical methods, which are known to converge
for h → 0 to the corresponding solution, and for which properties of the
numerical solution carry over to corresponding properties of the continuous
model. So there is no need to announce all the time, as did, for example,
Beckman (2006), that ‘the argument is water tight’.



596 G. Wanner

Acknowledgements

It is my pleasure to express my thanks first of all to Ernst Hairer, from whom
and with whom I had the privilege to learn numerical analysis over many
decades, further to Christian Lubich, our co-author of the latest book of our
trilogy on the numerical analysis of differential equations, to Philippe Henry,
my co-author of a book in progress on Euler, to Alexander Ostermann, my
co-author of a book in progress on geometry, to Alexei Shadrin, Cambridge,
and Christian Aebi and Bernard Gisin, Geneva, for important hints on
the literature, and to Glennis Starling, Acta Numerica’s copy-editor, for
excellent and extremely helpful support.

I also thank the Bibliothèque de Genève, as well as the Bibliothèque
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